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1. INTRODUCTION

In a recent paper [7] discussing inverse Holder inequalities, Nehari set
forth the inequality

(I)

where 11 ,... ,In are nonnegative, continuous and concave functions on [0, 1],
and Pl1 + '" +p;,! = I, Pi > °for all i. Here en = (n + I) !/([n/2] !)2.

The inequality (1) is somewhat misleading as it comes from two separate
inequalities, viz., ifj~ ,... ,fn belong to the class considered and are normalized
by

then

r.!v(x) dx -- ~,
'0

v ~ 1, ... ,11,

and

n 1 1, Pv

TI [(P v + 1) I f~)V(x) dX]
v=l 0

(2)
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Apparently, Nehari was unaware of this dichotomy. Moreover, his
argument on behalf of (1) was inappropriate; a correct demonstration was
provided by C. Borell [3] who also did not recognize that the two sides of (1)
are essentially unrelated and that (2) and (3) are the basic inequalities.
Actually, Borell offers the following more general result.

THEOREM. Let a1 , ••• , an be real numbers, all ?o 1, and suppose

is attained for 1 = 10 • Set

and aoo = I ak ·

k$10

Let gl ,... , gn be nonnegative jimctions defined on the interval (0, 1) such that
thefunctions g~!al, ... , g~!an are concave. LetPI"'" Pn be real numbers?o 1. Then

(1 ')

where

and B( P, q) is the familiar Beta function. Equality occurs if

and gJlx) = (I - xt', k ¢ 10 ,

Again, (1') also comes from two separate inequalities, and the number 1
can be interposed between the two sides of (1 ') after making a normalization:

[

1
l/ak 1

gk dx --2'
• 0

k = 1,... , n.

The verification of these inequalities parallels that of (2) and (3), and we
shall confine full attention to their proofs. A weaker version of (3) involving
two functions appeared earlier in Bellman [2].

In this paper, we establish (2) and (3) as stated. Furthermore, a formulation
of (3) is developed encompassing generalized concave functions. More
specifically, let Lu = D n Dn - 1 .. , DIU be an nth order differential operator on
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Cln)[o, 1] composed from the successive application of first order differential
operators

d I
DiU = -d .~(.) u(x),

X Wi X
i = 1,2, ... ,n

where wJx) are positive of class On) on [0, 1]. A function f is said to be
L-concave iff is a pointwise limit on the open interval (0, 1) of a sequence epm
satisfying Lep.", ~ 0. An equivalent definition expressed in terms of certain
determinantal inequalities involving an extended complete Tchebycheff
system (E.C.T.) is described in Karlin and Studden [5, Chap. 11] or
Ziegler [8]. We will indicate some cases of (3) for certain L-concave functions
satisfying boundary conditions.

2. AN UPPER BOUND FOR PRODUCTS OF POWERS OF CONCAVE FUNCTIONS

In this section we deal with (2).

PROPOSITION 1. Let fl, ... ,fn be nonnegative concave jimctions on [0, 1]
normalized by

Ifpv > 0, v = 1, ... , nand

l! l, ... , fl. (4)

then

n 1
I-= I,
F1 Pv

n. I 1

I (I +- -) f I~v(x) dx ~ I.
v~1 Pv 0

(5)

(6)

Proof Recall first Favard's inequality [5, p. 411] which states that where
f is a nonnegative concave function on [0, 1] and

.1 = (/(x) dx
'0

then, for each f, convex on [0, ~f], the inequality

I f2l . f1
2:] fey) dy ~ f(f(x) dx

o 0

holds.

(7)
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For the specificationf = lv, v = 1,... , n, we have by virtue of (4) 2Jv == 1,
v = 1,... , n. Since Pv > 1, if!(x) = xI'v is convex. Invoking Favard's inequality
yields

1 £1 1-!~ = yVv dy ~ £f~v(x) dx.
1 T Pv 0 0

Summing on v and referring to (5), gives

Q.E.D.

A direct consequence of (6) with appeal to the arithmetic-geometric mean
inequality leads to

THEOREM 1. Let fi ,...,fn be nonnegative concave functions on [0, 1]
normalized as in (4), and let Pv > 0, v = 1, ... , n, be real numbers satisfying (5).
Then

n [ J1 1/1I
v

TI (l + p) f~v(x) dX] :; l.
v~l 0

(8)

Observe that (8) is sharp; equality obtains exclusively for the determinations

.I~ = x,

.I: = 1 - x,

VEt,

V E 1',
(9)

with I and I' denoting any disjoint sets of indices obeying I U I' = {I, ... , n}.

3. A LOWER BOUND FOR PRODUCTS OF CONCAVE FUNCTIONS

We treat next the inequality (3), a bit more delicate.

THEOREM 2. Let fl ,... ,fn be nonnegative and concave functions on [0, 1]
normalized as in (4). Then

Jl [ n J ([n/2] 1)2TIh(X) dx? -_.,.
o v~1 (n + I).

Equality is attained only if

heX) = x, jJ E I,

heX) = I - x, V E 1',

(10)
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{l, 2, ... , n} and one of themwhere I and l' are sets of indices such that 1 u I'
contains [n/2] elements.

Proof It is familiar that the collection of ail nonnegative and concave
functions on [0, 1] comprises a pointed convex cone.

The normalization (4) delimits a section of this cone which is a convex set,
spanned by thc one parameter family of extreme points

g(x, t) ~= l[t'- x)/(I-- I),
o x f,

x I,
o f <: I, (11 )

g(x,O) = 1-- x, g(x, I) == x (see [6]). Since the functional FU~ ,..., j~)
J~ [TI;~If,,(x)] dx is multilinear, its minimum is attained at a:1 extreme point.

Thus, our task reduces to the minimization of

,1 l n JG(s] ,... , Sri) = J ng(x, .1';) dx,
o l,=-~l

o l. (12)

Fix 0 ~ Sl c( ... ~ Sn-I

the function
1 and let Sn f vary and accordingly consider

,.1

T(f) = J g(x, f) R(x) dx,
o

n-l
where R(x) = TIi~1 g(x, sJ.

We prove first a lemma.

LEMMA 1.

min T(t) - min{T(O),T(1)].
0,-',/-, I

(13)

(14)

Proof Observe that

\x(l -- f),
g(x,t)f(l ~ t) = I,(l.~ _)

.X f,

o
x

x f,

l,
o 1,

is a Totally Positive kernel (see [4, p. 33]) and consequently the induced
integral transformation is variation diminishing, and the same property is
endowed to g(x, t).

We separate the discussion into two parts:

(I) Si C~ 0, i co, l, 2, ... , n -_.- 1, or Si =, 1, i L 2.... , 11 -- 1. In
these cases R(x) is strictly monotone. Since g-(x, t) is variation diminishing,
and Jg(x, t) dx ,,,:: 1, it follows that Ht) is monotone and thereby (14) is
manifestly correct.

(11) There are at least two distinct Si·S. We wiil show in this case that
R(x) is unimodal with its mode located at an interior point. Suppose
So = ... ~. Sj .= 0, Sn-k Sn =. I, where 0 j k -+ j n I.
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Then R(x) is continuous and composed of polynomial segments whose
explicit form is

R(x) =; aixn-l~i(1 - X)i, on Si < x "S: SH1' j:c~ i < n - I - k,
a i > 0.

(15)°< t :s:: I,

Consider the derivative of R(x) on the interval (Si , Si+l). We have

R'(x) = aiXn-i-2(l - X)i-l[l1- i - 1)(1 - x) - ix]

= (n -- I) aixn~i-2(1 -- X)i-l[1 - X - i/(n - 1)].

It is clear that the sign of this expression depends only on i such that the
function R(x) is increasing on the range x < I - i/(n - 1) and dc:creasing
afterwards, verifying the unimodality property.

Observe on the basis of (4), that

T(t) - lc = r [R(x) - c] g(x, t) dx,
o

for all real c. Since the kernel g(x, t) is variation diminishing, we infer that
the number of sign changes of T(t) - lc as t traverses [0, I] does not exceed
the number of sign changes of R(x) -- c (x varying in [0, 1]). Moreover,
if the number of sign changes of T(t) - lc and R(x) - c agree then these
functions exhibit the same arrangement of signs (see [4, p. 21]).

Because R(x) is unimodal, we have

S-[R(x) - c] 2, for all real c,

where S-(f) denotes the number of sign changes off Furthermore, where
S-[R(x) - c] = 2, then the sequence of signs is {( -, -I, -n. The same
properties are inherited by the functions Tc(t)c= T(t) -~c for each c. It
follows that the minimum of T(t) is achieved at an end point. The proof of
the lemma is complete.

We now return to the theorem.
Recalling that g(x, 0) = I - x and g(x, 1) -= x, we can inductively

replace each interior Si by one of the end points, and calculate that

. l 1 ]
= min

O<k<n (n + I) (Z)
([n/2] !)2
(11 + I)!

and the minimum is taken only for k = [n/2] or n - k = [n/2]. Q.E.D.
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Remark l. The following finding of Bellman [2] emanates as a corollary
of Theorem 2.

THEOREM A. Let u, v be nonnegative concave functions on [0, 1] (designate
this class by 't') satisfying the constraints

.t

J v2(x) dx = l,
o

(l6)
u(O) ccc 1'(0) =, u(1) c.cc v( J) =c O.

Then
d

J u(x)v(x) dx ~,,~.
o

(17)

Proof We employ Favard's inequality (consult the proof ofProposition I)
under the identification f(x) == u(x), tjJ(x) =.c x2 to obtain

4 ( ,1 )2 (2])2 1 f21
"3 t u(x) dx == -3- = 21 0 y2 dy ru2(x) dx.

o

Hence, the minimum of (17) evaluated with respect to the set of functions
belonging to 't' satisfying (16) is not less than the minimum of f~ U1U2 dx
with respect to the functions of'C obeying the convex constraints

-1

I u,- dx
• 0

u,(O) = u,-( I) c' O.
(18)

But the minimum of f U1U2 over (18) is necessarily attained for functions
fulfilling

r
1 . v!3

u,(x) dx -2' _..•
'0

!,2. (18a)

The latter problem is clearly recognized as a special case of Theorem 2,
(n = 2).

By virtue of (10), adjusting for the altered normalization constant we find

2'

and Theorem A is proved.
Notice that the boundary conditions in (16) are superfluous.
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The same reasoning proves:
Consider the class of nonnegative concave functions ulx) satisfying

283

v = ], ... ,n.

Then

J
l ( n ,\ - ([nI2)!)2

o !I ulx)j dx ?: (v'3)n. (n + 1)! . (19)

Remark 2. If concavity is replaced by convexity then by similar but far
more elementary means we find Theorem B.

THEOREM B. LetIv , v = 1,... , n, be nonnegative convex functions on [0, 1],
vanishing at 0, and satisfying (4). Then

1 ' n) 1J
o

(!lIv(X) dx?: n+T (20)

with equality achieved for !vex) = x, v c-~ 1,... , n.

The extreme points for the collection of all convex nonnegative functions
vanishing at 0 normalized as in (4) are

o :(" x ,~ t,
t:("x:("l,

ho(x) = x,

and the result follows quickly as before. Theorem B is due to Anderson [1].

4. GENERALIZED SECOND ORDER CONCAVITY

In this section we generalize Theorem 2 to functions that are nonnegative
and concave with respect to a second order extended complete Tchebycheff
system (E.C.T.).

More specifically, consider the differential operator

where

DiU = (dldx)(llwi) u(x), i = 1,2

and J.1\(x), w2(x) are twice continuously differentiable (for Lf = f" then
wl (x) ,,0:= w2(x)- 1) strictly positive functions defined on [0, 1].
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(21 )

constitute an ECT-system on [0, 1]. The role of the functions x and 1 - x
in the present context will be played by

Vl(x) = H'l(X)r H'2W dg,
o

V2(x) = wl(x) JI H'2W dg.
x

(22)

Let '(i~(Ul , u2) denote the set of functions f which are concave with respect
to (Ul , u2), meaning that f satisfies

I
Ul(Xl) Ul(X2) Ul(X3) I
U2(Xl) U2(X2) U2(X3) ~ °
f(x l ) f(x 2) f(x 3)

for all choices,°~ Xl < x 2 <: X:1 ~ 1.

This agrees with the concept of L-concavity referred to in the introduction.

THEOREM 3. Let lv, v = 1,... , n, be nonnegative functions of '(i'-(ul , u2),

obeying the normalization

(!v(X) dx = 1,
• 0

for all v. (23)

This convex set is designated as £ZI(ul , u2). Then

Jl ( n ) dx . J.l dxx ? mm v x k V X n-k ---
o D./;(), W~-l(X) y- O';;k<n 0 [ l( )] [ 2()] W~-l(X) •

Proof Consider the boundary value problem

(24)

Lf= h (h square integrable),

f(O) = f(l) = 0,

and let g(x, t) be the corresponding Green's function. Its explicit expression
has the form

°~ x ~ t,
t ~ x ~ 1,

0< t < 1,

where a(t) is the reciprocal of the Wronskian of VI and V2 •
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In place of g(x, t), analogous to (11), we consider

285

g*(x, t) = (c(t)!a(t» g(x, t)

where

Observe that

and lim g*(x, t) = v1(x).
Itl

(25)

The elements of the collection {gtCx) = g*(x, t), °~ t ~ I} fulfill the
normalization condition (23) and constitute the extreme points of .01(u1 , u2)

(see [6]). Paralleling the proof of Theorem 2 we will prove that

(26)

Fix now 0 ~ SI ~ ... ~ Sn-1 ~ 1 and let Sn = t vary. The right integral
in (2.6) reduces to the function

T(t) = Cg*(x, t) R(x) dx,
'0

where R(x) = rC:: [g*(x, Si)!W1(X)].
We prove now the counterpart of Lemma 1.

LEMMA 2. The function T(t) defined in (27) satisfies

min T(t) = min[T(O), T(l)].
0<1<1

(27)

Proof Observe that g*(x, t) is Totally Positive (see [4, p. 33)) and
consequently the integral transformation (27) is variation diminishing.

Case 1. All the s/s are equal to one end point. Then

[I X ]n-l [ v (x) ]"-1
R(x) = 0 w1(t) dt = w:(x) (Si = 0, 1 ~ i ~ n - 1),
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[II ]n-l [V2(X) ]'/1-1
R(x) =cc ",' )VI(t) dt =

, WI(X) ,
for (S;' I, I 11 - I),

In either case, R(x) is monotone. Since g*(x, t) is variation diminishing and
normalized such that f g*(x, t) dx == 1 it follows that T(t) is monotone in
the same direction, and the assertion of the lemma is validated in this case.

Case II. There are at least two distinct s;'s.
We now claim that R(x) is unimodal with its maximum located at an

interior point. The function R(x) is of the form

on 0< ai'

On the segment (Si , Si+1), we have

I " [ V,l(X) ]n-i-2 r vix) ];--1
R (x) ~ Gi li'l(X) l-w

1
(x)

\ . 1'2(X) iw.(x);
X (n -- I -- 1) -- lV.(X) ~ -"- V (x)\I wiX) 2 1i'1(X) 1 \

\/,1 i II I
X I 11'2(t) dt - ------=--1 lV2(t) dt\,.

(. x J1 0

Thus, R(x) is increasing over the range where x satisfies

and decreasing subsequently verifying our claim that R(x) is unimodal.
Note, in view of (23) the identity

T(t) - c = r[R(x)- c] g*(x, t) dx,
o

for all real c.

o :( t I, (28)
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By virtue of the variation diminishing property endowed to the kernel
g*(x, t), and paraphrasing the analysis of Theorem 2, we readily deduce

1

o.I11'~~;l G*(Sl ,... , Sn) = o!lli2;n fa [g*(x, O))k[g*(x, 1)]n-k[dx/w~-l(x)].

Q.E.D.

5. SOME GENERALIZATIONS TO HIGHER ORDER DIFFERENTIAL OPERATORS

We presently generalize the inequality (24) to certain classes of functions
satisfying higher order differential inequalities. This is accomplished only for
the case of products of two functions.

Consider the sequence of first order differential operators

d uD·u ~~ ---
, dx Wi'

D *u = _1_ du(x)
, lVi(X) dx '

i = 0, I, ... , k -- I

where wi(x) > 0, Wi E:: ««k), i = 0, I, ... , k - 1.
Consider the 2k-order formally self-adjoint differential operator

and associated boundary conditions

(D1* ... D:-1Dlc- 1 DOU)(Yi) + (-It Ci.1U(Yi) = 0,

(D2*'" D:-1DIe- 1 Dou)(yJ + (_I)Ie+l Ci.2 DOu(Yi) = 0,

(30)

(Die*DIe -1 ... DOU)(Yi) + (_1)2k-2 Ci,Ie-1(Dlc- 3 ... DOU)(Yi) = 0,

(D Ie- 1 ... DOU)(Yi) + (-I)2k-1 Ci.lc(D,e-2 ... DOU)(Yi) = 0,

i = 1,2,

where Y1 = 0,12 = I, °~ C',j ~ 00, cl,j + C2,j > 0, I ~j ~ k.
The interpretation of Ci,j = 00 is the conventional one, namely, the

other term vanishes. Under these stipulations M is a self-adjoint operator,
and in [4, p. 545], the following theorem is proved.

THEOREM C. Let dF denote a measure ofbounded variation on [0, I]. Then
the equation

Mu =dF (31)
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has a unique solution u satisfying (30). This solution u(x) admits the represen
tation

.1

u(x) = J g(x, s) dF(s), (32)
o

where g(x, s) is the Green's function for the difFerential operator M with
boundary conditions (30). Moreover g(x, s) is a totally positive kernel.

The interpretation of (31) is standard, viz.,

where Pet) = J~ wo(x) dF(x).
Define now

, g(x, t)
R1(x) c.= 11m-- ,

t->O y(t)

yet) = rg(x, t) dx,
o

() I
, g(x, t)

R2 X = 1m -(-)- ,
t·_,! y t

(33)

and the convergence is uniform.
We can now state Theorem 4.

THEOREM 4. Let uy , v ~= 1, 2 be functions of class C21,; satisfying the
differential inequalities

and obeying the boundary conditions (30). If

then

rUy dx = 1,
o

v = 1,2, (34)

Remark. The continuity conditions on Uv can be relaxed to read: Let
Uv E C2J,'-2 be such that Muy are finite measures on [0, 1].

Proof In view of the representation theorem (32), and the multilinear
character of the functional F(u1 , U2) = JU1U2 the minimum of F(u1 , u2)

is attained where U1 and U2 are multiples of the corresponding Green's
functions.
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Denoting
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g(x, t) _ -( t) °< t < 1,yet) - g x, ,

We conclude on the basis of (33), that the minimum of F(u1 , u2) reduces to

where

Observe that g(x, s) is unimodal as a function of x for each °< s < 1.
Indeed, consider

gn(x, s) ==0 rg(x, t) Kn(t, s) dt converging to g(x, s),
o

where [Kn(t, s)]~ is a sequence of "approximating kernels" (an approximate
identity) peaking at sand Kn(t, s) can be chosen unimodal, as a function of t
for each s.

Notice now that, in view of (33),

gn(x, s) - C = rg(x, t)[Kn(t, s) - c] dt.
o

Since g(x, t) induces a variation diminishing integral transformation, we
infer

for all real c.

In particular, gn(x, s) - c exhibits at most two sign changes, and if two, in
the arrangement -, +, -. It follows that gn(x, s) is unimodal in x and
consequently the limit g(x, s) is likewise unimodal.

Hence, fixing S1 , and paraphrasing the previous reasoning, we find that

G(S1' t) = rg(x, S1) g(x, t) dx,
o

is unimodal as a function of t and accordingly attains its minimum at an end
point t = °or t = 1. Finally, we deduce

G(S1 ,S2) ;;?: min[G(O, 1), G(l, 1), G(O, 0)].

Q.E.D.
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We close this section with some concrete examples of Theorem 4 and a
number of variations.

THEOREM 5. Let J~ E C4 [0, 1], i = 1,2 satisfy,

J;(O) = .t;(1) = 1;(0) = 1;(1) = 0,

rIi dx = 1.
o

Then

1 124fo fdz dx ?: 105

and the inequality is sharp.

Proof Straightforward computations produce

i = 1,2, (36)

(37)

I

t(1 - t)(2 - t) ,t - 1 3
6 x'-6- x ,

g(x, t)
- t(1 - tt + t) (1 - x) + ~ (x - 1)3,

° :c:;; x :c:;; t,

t :c:;; x :c:;; I,

Jl t(1-t)
yet) == g(x, t) dx = 24 [1 + t(l - t)],

o

R1(x) = lim g(x(,)t) = 4x(1 - x)(2 - x),
1->0 Yt

Rz(x) = lim g(x(, )t) = 4x(1 - x)(1 + x) = 4x(l - X Z).
1->1 Y t

Note that Rz(x) = R 1(l - x). Hence, we are left with the task of computing

f 128
G(l, 1) = G(O, 0) = 16 [x(1 - XZ)J2 dx = 105

and

f 124
G(l, 0) = 16 xZ(1 - X)2(1 + x)(2 - x) dx = 105 .

Comparing these values, (36) is validated.
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THEOREM 6. Letii E C4[0, 1], i = 1, 2, satisfy
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f;4)(0) ~ 0,

fi(0) = 1;(1) = 1/(0) = i/(1) = 0,
.1

J 1; dx = 1.
o

Then

JI 36
Id2 dx ~ 35'

o

and the inequality is sharp.

Proof Here we have

i = 1,2, (38)

(39)

so that

g(x, t) =
x

2
(1 ;: t)2 [3t _ x(2t + 1)],

(x -61)2 t
2

[(3 _ 2t)x _ t],

o ~ x ~ t,

t ~ x ~ 1,

JI t2(1 - t)2
yet) = 0 g(x, t) dx = 24 '

Again RI(x) = R2(l - x); so that we have only to compare

J
48

144 x 2(l - X)4 dx = 35

and

J 36
144 x 3(1 - X)3 dx = 35 .

and the required result manifestly follows.
The last two theorems can be extended embracing a wider class offunctions

preserving the same inequalities.
To wit, consider the class of functions

cff = lJ;f(4) E C(O, 1),1(0) = f(1) = 0,j(4)(X) ~ 0,

1'(0) ~ °~1'(l),rfdx = 11,
which strictly contains the functions delineated by the conditions in (38).
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THEOREM 7. Let hand./; befunctions of tE. Then (39) holds.

Proof Let 1= f - P where P is a third degree polynomial, determined
such that I satisfies

1(0) = I(l) = 1'(0) = 1'(1) = o.

Clearly,j (4) = fl4l ): O. It follows that I 0, by virtue of the representation
(32) since the appropriate Green's function is positive.

Since P(O) = /(0) = P(I) = /(1) = 0, a direct calculation reveals that

P;l = 1'(0) x(l -- X)2 + (-1'(1» x2(1- x).

Sincel'(O) > 0,1'(1) < 0 we secure

f = ex[l2x(l - X)2] + f:l[1 2x2(1 - x)] + y ·lly

with ex > 0, f:l > 0, Y = f~1 dx > 0.
Note thatlly belongs to the set singled out in Theorem 6, and the functions

in the square brackets coincide with R1(x) and R 2(x), respectively. Since
ex + f:l + y =~ I, we have a convex linear combination of the three functions,
and the minimum is the same as in Theorem 6.

Similar considerations lead us to the following class, containing the set
defined by (36)

'6\ = k;/(4l E qo, 1),/('1) ~ 0,/(0) = /(1) = 0,

r(O) ~ 0'/"(1) ~ 0, Cfdx = 1(.
'0

We have here Theorem 8.

THEOREM 8. Let fl '/2 be functions of'?51 • Then (37) holds.
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